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Figure 1. The basic idea of our method. Taking the patchy point clouds as inputs, we first voxelize the points and then initialize our
Deformable Neural Mesh Primitive (DNMP) for each voxel. During training, the shapes of DNMPs are deformed to model the underlying
3D structures, while the radiance features of DNMPs are learnt to model the local radiance information for neural rendering. Based on our
representation, we achieve efficient and photo-realistic rendering for urban scenes.

Abstract

Neural Radiance Fields (NeRFs) have achieved great
success in the past few years. However, most current meth-
ods still require intensive resources due to ray marching-
based rendering. To construct urban-level radiance fields
efficiently, we design Deformable Neural Mesh Primi-
tive (DNMP), and propose to parameterize the entire scene
with such primitives. The DNMP is a flexible and com-
pact neural variant of classic mesh representation, which
enjoys both the efficiency of rasterization-based render-
ing and the powerful neural representation capability for
photo-realistic image synthesis. Specifically, a DNMP con-
sists of a set of connected deformable mesh vertices with
paired vertex features to parameterize the geometry and ra-
diance information of a local area. To constrain the degree
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of freedom for optimization and lower the storage budgets,
we enforce the shape of each primitive to be decoded from
a relatively low-dimensional latent space. The rendering
colors are decoded from the vertex features (interpolated
with rasterization) by a view-dependent MLP. The DNMP
provides a new paradigm for urban-level scene represen-
tation with appealing properties: (1) High-quality render-
ing. Our method achieves leading performance for novel
view synthesis in urban scenarios. (2) Low computational
costs. Our representation enables fast rendering (2.07ms/1k
pixels) and low peak memory usage (110MB/1k pixels).
We also present a lightweight version that can run 33×
faster than vanilla NeRFs, and comparable to the highly-
optimized Instant-NGP (0.61 vs 0.71ms/1k pixels). Project
page: https://dnmp.github.io/.

1. Introduction

Synthesizing photo-realistic images of 3D scenes is a
long-standing problem in computer vision, and has been
the focus of research in the past decades. However, even
with years of effort, the current paradigms still face great

https://dnmp.github.io/


challenges especially in urban outdoor scenarios, due to the
increased representation complexity and demanding com-
putational resources.

To achieve high-quality image rendering, the com-
puter graphics community has explored various techniques
for scene representation, including point clouds [23],
meshes [20, 22], voxels [46], implicit functions [6, 21], etc.
The mesh-based representation is widely used in modern
rendering pipelines due to its compact and efficient nature.
However, constructing water-tight mesh models of urban
scenes for modern graphic engines is still difficult. Besides,
the textures and illuminations are difficult to be realistically
recovered with the classic techniques.

The recent neural rendering methods circumvent the
mesh construction step and represent the scene with im-
plicit neural functions. NeRF [31] and its advanced vari-
ants [29, 39, 54, 59, 4] proposed to store the density and
radiance information of a volume inside multi-layer percep-
trons (MLPs), and adopt volumetric rendering for view syn-
thesis. Recently, some researchers [50] also made efforts
to extend the NeRF models to large-scale scenes by inde-
pendently representing a city block-by-block and merging
the representations together thereafter. Although remark-
able progress has been made, their rendering process is still
computationally intensive as the implicit functions need to
be evaluated thousands of times to densely sample the space
during volumetric rendering. Most of the computational re-
sources are wasted on the samples in empty spaces, and
the situation will further escalate in outdoor scenes where
empty space dominates.

More recently, researchers have identified this issue and
propose to combine neural rendering with explicit point-
cloud reconstruction to improve the efficiency [55, 36]. In
this way, the empty spaces can be skipped by taking the
explicit reconstruction as a reference, which significantly
saves computational resources. These methods associate
point-wise learnable high-dimensional features to the re-
constructed point clouds for spatial radiance encoding. Dur-
ing rendering, only the points around the intersections of
the view ray with the point clouds will be sampled for fea-
ture aggregation. Based on such aggregation mechanism, a
dense and perfect reconstruction is vital for photo-realistic
rendering. However, the reconstructed points are usually
not uniformly distributed from the current reconstruction
algorithms [18] and missing regions may be also ubiqui-
tous. The noisy reconstruction will increase the learning
difficulty of the implicit function and degrade the final ren-
dering quality.

In this work, we propose an efficient radiance field rep-
resentation for large-scale environments by combining effi-
cient mesh-based rendering and powerful neural represen-
tations. Specifically, we develop Deformable Neural Mesh
Primitive (DNMP) and propose to represent the entire ra-
diance field in a bottom-up manner with such primitives,
where each DNMP parameterizes the geometry and radi-

ance of a local area. A DNMP consists of a set of con-
nected deformable mesh vertices and each vertex is paired
with a feature vector for radiance modeling. To constrain
the degree of freedom for shape optimization and decrease
the storage budgets, we enforce the mesh vertices of each
DNMP to be decoded from a relatively low-dimensional la-
tent code. The latent code will be optimized to deform the
primitive shapes for 3D structure modeling during training.

Different from previous methods [55, 36] that rely on in-
efficient k-Nearest Neighbors (k-NN) algorithm to gather
related features for rendering, we can directly leverage
the rasterization pipeline for feature interpolation, which is
more efficient. Based on rasterization, for each view ray,
a set of features is collected by interpolations from the tri-
angulated vertex features. These interpolated features are
thereafter input to an implicit function (implemented with
MLPs) to get the corresponding radiance and opacity val-
ues for volumetric rendering.

To represent the entire scene, we first coarsely voxelize
the scene according to the 3D reconstruction results (from
Multi-View Stereo (MVS) [45] or hardware sensors), and
then parameterize the geometry and radiance of each voxel
with a DNMP. Considering the practical 3D reconstruction
results may be noisy and full of missing regions, we further
propose to voxelize the scene with hierarchical resolutions
and separately represent the radiance fields accordingly
with hierarchically-sized DNMPs. The rendering results
from different hierarchy levels will be blended. Based on
our DNMP-based hierarchical representation, we achieve
more robustness against noisy 3D reconstructions compared
with the previous point-cloud based methods [55, 36].

We evaluate our method on two urban datasets, i.e.,
KITTI-360 [26] and Waymo Open Dataset [49]. Our
method enables photo-realistic rendering and achieves lead-
ing performance for novel view synthesis. We achieve a
much faster speed and produce fewer peak memory foot-
prints compared with vanilla NeRFs. We also present
a lightweight version to further accelerate the rendering.
This lightweight version can run at an interactive rate
only with limited sacrifices on rendering quality, the speed
of which is even comparable with the highly-optimized
Instant-NGP’s [32]. Moreover, our method can be easily
embedded into modern graphic rendering pipelines and nat-
urally supports scene editing, which provides the potential
for possible applications such as VR/AR.

2. Related Work

Neural rendering. The early-phase neural rendering tech-
niques [30, 43, 25, 2] proposed to directly project 3D
signals to a 2D image plane and train a 2D CNN that
maps projected signals to the final output image. Their
mapping process only relies on the CNN regression abil-
ity without explicit physical modeling of the 3D space,
which could bring performance bottlenecks in synthesiz-



ing novel views. The recent volume rendering based ap-
proaches [31, 29, 39, 54, 59, 4, 9, 42, 14] alleviate such
dilemmas by storing the densities and radiances of a scene
within an implicit neural function and synthesizing novel
views with volumetric rendering. Mip-NeRFs [4, 5] ren-
der anti-aliased conical frustums instead of rays, which are
widely applied given the good rendering results in general.
However, the implicit function needs to be evaluated thou-
sands of times on the densely sampled space points for vol-
umetric sampling, leading to inefficient training and infer-
ence. In the past few years, many methods are proposed
to accelerate NeRFs. Some methods [19, 27, 35, 38, 55]
use proxy scene structures or surface information to reduce
the number of samples in empty spaces for inference ac-
celeration, while other solutions improve the inference or
training speed by marrying NeRF with efficient data struc-
tures [41, 17, 19, 57, 48, 13, 32, 7]. As a representative,
Instant-NGP [32] significantly improves the efficiency of
classic NeRF via the hierarchical space division and highly-
optimized CUDA implementation. However, these meth-
ods lack explicit surface constraints, which may lead to less
robustness against viewpoint changes for view synthesis.
Moreover, all these methods still have not been widely sup-
ported by modern graphic rendering pipelines and also have
difficulties in supporting scene editing for downstream ap-
plications.
Outdoor NeRFs. Recently, some researchers tried to ex-
tend NeRF to outdoor scenes [42, 29, 50, 36]. NeRF-
W [29] incorporates frame-specific codes in the rendering
pipeline to handle the photometric variation and transient
objects. Block-NeRF [50] extends the NeRF to urban sce-
narios and builds up the block-wise radiance fields with in-
dividual NeRFs to composite the complete scene. However,
these methods still rely on costly volumetric sampling as
indicated above, which will waste huge amounts of com-
putational resources in empty spaces. Rematas et al. [42]
include LiDAR point clouds for supervision to facilitate
geometry learning. Neural Point Light Field (NPLF) [36]
leverages the explicit 3D reconstructions from LiDAR data
to represent the radiance field for rendering efficiency. But
they still simply aggregate several nearest feature points
around each view ray for rendering without considering the
scene geometry in detail, which causes bottlenecks for high-
resolution rendering.
3D Shape Reconstruction. The classic pipeline for 3D re-
construction from color images usually first estimates the
camera poses based on structure-from-motion [44, 1] and
then recovers dense depths with Multi-View Stereo (MVS)
techniques [45, 8, 15, 56, 51]. These methods can handle
ideal scenarios but may generate incomplete reconstruction
results under adverse conditions, e.g., illumination changes,
textureless areas, etc. The methods based on implicit fields
[37, 11, 58, 53] are generally more robust but an expen-
sive iso-surfacing step [28] is required to extract the mesh
from the representation, which is prone to quantization er-

rors. Prior to our work, some works [52, 16, 47, 33] pro-
posed deformable meshes for shape reconstruction and ren-
dering. However, these techniques are still sensitive to prac-
tical noisy data and are usually limited to object-level shape
optimization.

3. Method
To parameterize the large-scale urban radiance field ef-

fectively, we propose Deformable Neural Mesh Primitive
(DNMP). DNMP is a neural variant of classic mesh rep-
resentation, which takes advantage of both the efficient
rasterization-based rendering and the powerful neural rep-
resentation capability. A DNMP is capable of modeling the
geometry and radiance information of a local 3D space in
an expressive and compact manner, and the entire radiance
field is hierarchically constituted by a series of DNMPs.

3.1. Deformable Neural Mesh Primitive

Triangle meshes are widely used in computer graphics.
The meshes can compactly represent 3D surfaces and be ef-
ficiently rendered based on rasterization. To leverage the
efficiency of mesh-based representation and the impressive
radiance representation ability of neural features, we de-
velop Deformable Neural Mesh Primitive (DNMP) and pa-
rameterize the entire scene with such primitives. DNMP is
an enclosed triangle neural mesh, constituted by a set of de-
formable mesh vertices V = {vi|i = 1, . . . , N} paired with
learnable vertex radiance features F = {fi|i = 1, . . . , N}.
The vertices define the shape of each DNMP, while the ver-
tex features encode the radiance information of a local area.
Shape parameterization of DNMP. A DNMP may con-
tain tens of vertices. To constrain the degree of freedom for
shape optimization, we design an auto-encoder [24] to learn
a compact latent space to parameterize the primitive shapes.

Specifically, we first establish a database that contains
a huge number of meshes created from local 3D structures
and train our auto-encoder with them. These local structures
are collected from different types of datasets, both indoors
and outdoors. We assume the database is large enough to
capture all the possible local structural variations for com-
pact latent space learning.

Our auto-encoder is designed based on PointNet [40],
containing a shape encoder and a shape decoder. The shape
encoder encodes the geometric information of differently-
shaped meshes into compact shape latent codes z. The
shape decoder G directly decodes the shape latent code z
to DNMP’s vertices V = {vi|i = 1, . . . , N} (in a prede-
fined order), i.e., V = G(z). The output vertices can be
trivially converted to an enclosed mesh according to the pre-
defined connectivity relations. To learn the latent space, we
encourage the shapes of decoded DNMPs to match the in-
put meshes. The training loss of the auto-encoder contains

The details are in supplementary materials.
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Figure 2. The overview of our framework. The entire scene is voxelized based on the point-cloud reconstruction, where each voxel is
assigned a DNMP to parameterize the geometry and radiance of the local area. By rasterization, we can obtain the interpolated radiance
features {fj |j = 0, 1, . . . J} from the intersected DNMPs for each view ray r. Thereafter, these interpolated features along with the
view-dependent embeddings {γj |j = 0, 1, . . . , J} are sent to an implicit function Fθ to predict the radiance value cj and opacity αj of
each intersection point. Finally, the rendering color Ĉ(r) of the view ray r is obtained by blending the radiance values according to the
opacities {αj |j = 0, 1, . . . , J}.

two parts:

Lae = Lchamfer(V) + Lregularize(V). (1)

The chamfer distance loss Lchamfer enforces the close-
ness between two sets of randomly sampled points from
the input and output mesh faces. Besides, we also encour-
age the normal consistency [10] and mesh smoothness [34]
with a regularization loss Lregularize, which is described
detailedly in supplementary materials. To constrain the la-
tent code space, we normalize the latent code to unit length,
i.e., ||z||2 = 1. The dimension of the latent space is empiri-
cally set to 8 for reliable shape optimization.
Radiance parameterization. To encode the radiance in-
formation, we associate independent learnable feature vec-
tors to DNMP’s vertices. During rendering, unlike the pre-
vious point-based methods [55, 36] that need to query fea-
tures with time-consuming k-NN searching [12], we can ef-
ficiently obtain the related features via rasterization. More-
over, in this manner, the encoded radiance is better aligned
with the local surfaces, which is helpful to improve the view
consistency of the radiance field.

3.2. DNMP-Based Scene Representation

To construct a view-consistent radiance field, we empha-
size the optimization of both geometry and radiance. For
initialization, the target scene is first voxelized based on the
point-cloud reconstruction from MVS [45] or hardware sen-
sors. Then, each voxel is assigned a DNMP to parameterize
the structure geometry and radiance information in the local

We only show the rendering process for one hierarchy in this figure.
The final color will be blended from several hierarchies with Eq. 5.
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Figure 3. Even supervised with the incomplete depths with Eq. (2),
the DNMPs can be generally deformed to reflect the underlying
geometry thanks to the compact latent space learnt from huge
number of local 3D structures.

area. Before training, the shape latent code of each DNMP
is initialized to correspond to a spherical template (scaled
to match the voxel size), as illustrated in Fig. 1. For con-
venience, we denote the set of all the shape latent codes of
the scene as Z = {zl|l = 1, 2, . . . , L}, where l indexes the
DNMP and L is the total number of DNMPs of the scene.

DNMP-based shape optimization. To abstract the scene’s
geometry with DNMPs, we need to optimize the shape la-
tent codes. We leverage the estimated depth maps D (by
MVS [45] or other sensors) of captured video sequences of
the scene to optimize the latent code. During training, we
render a corresponding depth map D̂ based on the current



shapes of DNMPs in a differentiable manner. As the DNMP
shapes are controlled by the latent codes Z , the rendered
depth D̂ can be written as a differentiable function of latent
codes Z as D̂(Z). Then, we supervise the rendered depth
map D̂ with the pre-estimated depth map D via the L1 loss

Lgeo = ||D̂(Z)−D||1, (2)

which deforms the DNMPs to abstract the scene’s geom-
etry. We found that even supervised with imperfect depth
maps D (shown in Fig. 3), the latent codes Z can be opti-
mized to reflect the underlying geometry reasonably, thanks
to the strong structural priors learnt by the pretrained shape
decoder (Sec. 3.1) from huge amounts of data.
Hierarchical representation. As the 3D reconstruction re-
sults with MVS [45] may have many missing regions in out-
door environments, DNMP may thus fail to be initialized for
the missing parts, which will cause unsatisfactory rendering
results. To avoid this, we model the entire scene in a hier-
archical manner. Concretely, we voxelize the reconstructed
point cloud with hierarchical sizes, e.g., 0.5m, 1m, etc. to
make the missing regions can be covered by larger-sized
voxels. Thereafter, we initialize the DNMP (with respec-
tively scaled sizes) for each hierarchy and optimize their
shapes with Eq. (2).

3.3. Radiance Modeling and View Synthesis
Rasterization and radiance feature interpolation. To
render a pixel, we collect the related features with raster-
ization as shown in Fig. 2. The radiance features used for
rendering, denoted as {fj |j = 1, 2 . . . , J}, are essentially
interpolated from the triangulated vertex features of the in-
tersected mesh faces, where j indexes the intersections. Be-
sides, we use the view-ray direction d ∈ R3 and the surface
normal nj ∈ R3 at the intersection point to model the view-
dependent factor γj = {nj ,d}.
Rendering. The radiance feature fj as well as view-
dependent factor γj is input to a MLP Fθ (shared among
a sequence) after positional encoding [31]. Fθ will predict
a pair of radiance value cj and opacity αj for each inter-
sected point:

cj , αj = Fθ(fj ,γj). (3)

The opacity αj here represents the probability that the ray
will terminate at the j-th point [3]. In our implementa-
tion, Fθ predicts the opacity αj only based on fj . The
view-dependent factor γj is only input to the branch split
from near the end of the entire network to predict the view-
dependent radiance value cj following the spirit of [31].

We empirically keep J nearest intersections for each
view ray and predict their radiance and opacity values, i.e.,
{(cj , αj)|j = 1, . . . , J}. Thereafter, to render the pixel of
this view ray r, the expected color is calculated as

Ĉ(r) =

J∑
j

Tjαjcj , Tj =

j−1∏
p=1

(1− αp). (4)

Blending hierarchical DNMPs. To improve the unsatis-
factory rendering caused by the missing regions in point-
cloud reconstruction, we need to blend the rendering re-
sults of DNMPs from different hierarchies. We denote the
rendered colors from different hierarchies with Eq. (4) as
{Ĉ1(r), Ĉ2(r), . . . , ĈS(r)}, where the subscripts denote
the hierarchy levels. We practically blend these results from
the finest level (Ĉ1(r)) to the coarsest level (ĈS(r)) to bet-
ter keep the texture details:

Ĉ(r) = Ĉ1(r)+(1−A1)Ĉ2(r)+· · ·+
S−1∏
s=1

(1−As)ĈS(r),

(5)
where As is calculated as the summation of the accumulated
weights of the respective hierarchy, i.e., As =

∑J
j Tjαj ,

and As will be manually set to 0 if there is no view-ray
intersection in this level.
Radiance feature learning. The DNMPs’ vertex features
are empirically initialized with the positional encoding [31]
of the vertex coordinates before training. During training,
we supervise the radiance feature learning with the camera
images C in the training video sequence:

Lrad =
∑
r∈R

||Ĉ(r)−C(r)||22, (6)

where Ĉ(r) and C(r) are the rendered color and the
ground-truth color of view ray r. This loss is applied for
all the view rays R defined by the training image sequence.
Non-structured regions. Given that our method mentioned
above is based on the explicit geometric abstraction of the
scene, the non-structured regions (e.g., sky) cannot be well
handled. We use Mip-NeRF [4] to handle these regions in
our implementation.

4. Experiments
4.1. Experimental Setup
Implementation details. For the hierarchical representa-
tion, we voxelize the point clouds with two hierarchical
sizes, i.e., 0.5m and 1m. During rendering, we blend ra-
diance values of the nearest 4 intersection points for the
0.5m hierarchy, i.e., J is set to 4. For the hierarchy with
1m DNMPs, J is set to 2. The frequency of positional en-
coding for vertex feature initialization is set to 3, resulting
in 21-dimensional features. Please refer to supplementary
materials for more details.
Datasets. We conduct experiments on two urban datasets,
i.e., KITTI-360 [26] and Waymo Open Dataset [49].
KITTI-360 is a large-scale dataset containing 4 × 83, 000
images captured in urban environments with a driving dis-
tance of around 73.7 km. We select 5 sequences from them
to evaluate our method. For the evaluation of novel view
synthesis, we select every second image in each sequence
as the test set and train our model on the remaining images.



Table 1. Ablation studies to show the effectiveness of our DNMP-
based shape optimization on KITTI-360 dataset.

Method direct shape optim. w/o shape optim. w/o hierarchy Ours

PSNR↑ 21.41 20.36 23.21 23.41
SSIM↑ 0.789 0.758 0.840 0.846
LPIPS↓ 0.397 0.421 0.322 0.305
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Figure 4. View synthesis results with different strategies for prim-
itive shape optimization. The results of direct shape optim. are
slightly better than w/o shape optim., but are still much less satis-
factory compared with our DNMP-based shape optimization.

For Waymo Open Dataset, we follow [36] to select the 6
sequences mainly containing static objects for our experi-
ments. We select every 10th image in the sequences as the
test set and take the remaining ones as the training set. De-
tails of datasets splits are provided in supplementary materi-
als. To better evaluate and compare the synthesis capability
for details, we train and evaluate our methods and all the
baselines with full-resolution images (i.e., 1408 × 376 for
KITTI-360 and 1920× 1280 for Waymo dataset).
Evaluation metrics. Following the previous methods [31,
4], our evaluations are based on three widely-used metrics,
i.e., peak signal-to-noise ratio (PSNR), structural similarity
index measure (SSIM), and the learned perceptual image
patch similarity (LPIPS) [60].

4.2. Ablation Study

We conduct thorough ablation studies on KITTI-360
dataset to analyze the effects of the proposed components
on the task of novel view synthesis.
Shape optimization of DNMPs. We introduce two abla-
tion variants to demonstrate the effectiveness of the pro-
posed DNMP-based shape optimization. For the variant di-
rect shape optim. in Table 1, instead of decoding the DNMP
vertices from the latent code, we assign learnable vertex
offset parameters to deform the spherical mesh templates
and directly optimize these parameters using the same loss
function Lgeo (Eq. (2)). For the variant w/o shape op-
tim., we simply use the original spherical mesh templates
without further shape optimization. According to the novel
view synthesis performance in Table 1 and visualizations in

Direct Shape Optimization DNMP-Based Shape Optimization

Figure 5. Visualization of the scene geometry optimized with dif-
ferent strategies. Compared with directly optimizing the vertex
parameters, our DNMP-based shape optimization is more robust.

Table 2. Hyperparameter analysis based on KITTI-360 dataset.

Metric # Intersection points J Radiance feature dim. DNMP radius Light-
weight

2 4 8 15 21 27 2 m 1 m 0.5 m

PSNR↑ 23.23 23.41 23.43 23.21 23.41 23.28 22.61 23.20 23.21 23.27
SSIM↑ 0.843 0.846 0.847 0.839 0.846 0.845 0.818 0.838 0.840 0.842
LPIPS↓ 0.313 0.305 0.306 0.321 0.305 0.301 0.376 0.332 0.322 0.307

Fig. 4, although direct shape optim. achieves better results
than w/o shape optim., it is still inferior to our DNMP-based
shape optimization. We visualize and compare the opti-
mized scene geometries in Fig. 5. Without the constraints
on degree of freedom, the version direct shape optim. be-
comes sensitive to incomplete and noisy depth maps from
MVS, which leads to noisy geometry recovery. The unsat-
isfactory scene geometry should explain the degradation in
rendering quality. In contrast, our proposed DNMP-based
shape optimization is much more stable, which leads to ro-
bust surface modeling and better rendering quality.
Rendering process. As we mentioned in Sec. 3.3, we col-
lect the J nearest radiance features from the mesh faces
intersected by the view ray and calculate the rendering
color with Eq. (4). We conduct experiments with differ-
ent intersection numbers J and the performance compari-
son is shown in Table 2 (in the column # Intersection points
J). Our performance is relatively robust to the intersec-
tion number J and a small J = 4 is generally enough
for good view synthesis performance due to our effective
DNMP-based shape optimization. Besides, we also try with
the radiance features of different dimensions (denoted as
Radiance feature dim. in Table 2). It is shown that 21-
dimensional feature is sufficient for good rendering quality.
Hierarchical DNMPs. We first analyze the performance
with different radii of DNMPs. As shown in Table 2
(columns under DNMP radius), our performance is toler-
ant to large DNMP radii, which is beneficial for resource-
constrained scenarios. To verify the necessity of the hier-
archical representation in covering missing structures, we
synthesize the images only with the DNMPs of the finest
hierarchy, the performance of which is reported in Table 1
(denoted as w/o hierarchy). The performance is degraded.
Examples shown in Fig. 6 demonstrate that the hierarchi-
cal DNMPs can effectively improve the completeness of the
synthesized images.
Lightweight version. To better adapt to latency-sensitive



With Hierarchy W/o Hierarchy

Figure 6. Rendering with or w/o hierarchical DNMPs. The pro-
posed hierarchical DNMPs effectively completes the missing re-
gions in the synthesized images. Better zoom in for more details.

systems, we provide a lightweight version by reducing the
complexity of the MLP Fθ (Please refer to supplementary
materials for more details). Due to the high capacity of
our surface-aligned features, the lightweight version still
achieves competitive performance as shown in Table 2.

4.3. Comparison with the State-of-the-Art Methods

We compare the proposed method with several compet-
itive baselines on the task of novel view synthesis, includ-
ing NeRF [31], NeRF-W [29], Mip-NeRF [4], Mip-NeRF
360 [5], Instant-NGP [32], and two point cloud-based neu-
ral rendering methods (i.e., Point-NeRF [55] and NPLF
(Neural Point Light Fields) [36]). The evaluation results
on KITTI-360 dataset and Waymo dataset are shown in Ta-
ble 3, 4, respectively. We also provide qualitative compar-
isons on Waymo dataset in Fig. 7 (Please refer to our sup-
plementary materials for more visualization results). It is
shown that our method performs consistently well on both
datasets. Compared with these competitive baselines, our
method achieves competitive novel view synthesis qual-
ity in terms of all the evaluation metrics. Especially, we
achieve a lower LPIPS than other baselines. The metric
LPIPS should be more consistent with the perception of our
human beings [60]. The lower LPIPS indicates that our syn-
thesized images should be more realistic and rich in details
compared with the other methods.

We also find that, although Point-NeRF has achieved
good performance in small-scale synthetic dataset, it may
fail to render high-quality images in real outdoor environ-
ments due to the existence of complex occlusions and in-
complete noisy point-cloud reconstructions. Moreover, the
previous neural rendering method NPLF designed for out-
door scenarios is also found to be less effective to synthe-
size high-resolution images. We deem it could be caused by
the lack of geometry optimization in NPLF. Thanks to the
DNMP-based scene representation, the proposed method
achieves photo-realistic rendering with rich texture details.

To further evaluate the view synthesis ability for the
views that are significantly different from the training set,
we rotate the original testing views of KITTI-360 dataset

Table 3. Performance comparison of novel view synthesis with
other competitive baselines on KITTI-360 dataset.

Method PSNR↑ SSIM↑ LPIPS↓

NeRF [31] 21.94 0.781 0.449
NeRF-W [29] 22.77 0.794 0.446
Instant-NGP [32] 22.89 0.836 0.353
Point-NeRF [55] 21.54 0.793 0.406
Mip-NeRF [4] 23.21 0.810 0.455
Mip-NeRF 360 [5] 23.27 0.836 0.355

Ours 23.41 0.846 0.305
Table 4. Performance comparison of novel view synthesis with
other competitive baselines on Waymo dataset.

Method PSNR↑ SSIM↑ LPIPS↓

NeRF [31] 26.24 0.870 0.472
NeRF-W [29] 26.92 0.885 0.418
Instant-NGP [32] 26.77 0.887 0.401
Point-NeRF [55] 26.26 0.868 0.450
NPLF [36] 25.62 0.879 0.450
Mip-NeRF [4] 26.96 0.880 0.451
Mip-NeRF 360 [5] 27.43 0.893 0.394

Ours 27.62 0.892 0.381
Table 5. View synthesis quality for the views that are significantly
different from the training set. PSNR is adopted as the evaluation
metric and the experiments are based on KITTI-360 dataset.

Method Point-NeRF [55] Mip-NeRF [4] Ours

45◦ left rot 12.63 14.33 15.25
45◦ right rot 14.32 16.16 17.09

Table 6. Efficiency analysis.

Methods # Network evaluations
(/pixel)

Peak memory
(GB/1K pixel)

Rendering time
(ms/1K pixel)

NeRF [31] 256 0.80 20.24
Mip-NeRF 360 [5] 96 0.53 10.39
Point-NeRF [55] 40 2.06 32.44
NPLF [36] 1 0.10 20.08
Instant-NGP [32] ∼126 0.02 0.71
Ours 6 0.11 2.07
Ours (Lightweight) 6 0.03 0.61

to the left or the right by 45◦ for evaluation. The per-
formance comparisons under this setting are shown in Ta-
ble 5. Due to the explicit surface modeling with DN-
MPs, our method demonstrates relatively stronger robust-
ness against the viewpoint changes compared with Mip-
NeRF and Point-NeRF. According to the qualitative results
in Fig. 8, our method can still output reasonable render-
ing results under 45◦ view rotations, while the counterparts
have failed and generated severe blur and artifacts.

4.4. Efficiency Analysis
We analyze the efficiency of our system in terms of ren-

dering time and memory consumption, and compare them
with other typical methods. All the evaluations are based
on an NVIDIA A100 GPU. The results are exhibited in Ta-
ble 6. Given our explicit surface modeling, we only need
the 6 nearest surface points intersected by the view ray (4
in the finest hierarchy and 2 in the coarser one) and eval-
uate the network on them, which significantly reduces the
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Figure 7. Qualitative comparison of novel view synthesis on Waymo dataset. Cropped patches are scaled to highlight the details. Due to
the explicit and accurate surface modeling, the proposed method significantly outperforms baseline methods and effectively recover the
texture details. Please refer to our supplementary materials for more visualization results.
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Figure 8. Qualitative comparison of novel view synthesis with sig-
nificant view differences from the training set. Compared to Mip-
NeRF and Point-NeRF, the proposed method can produce high-
quality results with much less blurs and artifacts. Better zoom in
for more details.

runtime and GPU memory usage. Besides, we leverage
rasterization for radiance feature interpolation rather than
the inefficient k-NN algorithm adopted by Point-NeRF [55]
and NPLF [36], which further improves the efficiency.
Consequently, we achieve 5× faster rendering speed with
only ∼ 1

5 peak memory consumption compared with Mip-
NeRF 360. Instant-NGP [32] is well-known for its fast
inference speed based on the highly-optimized implemen-
tation. Although our system is naively implemented with
PyTorch, we achieve an inference speed competitive with
Instant-NGP thanks to the efficient rasterization-based ren-
dering and the small network evaluation times. Besides,
our lightweight version can achieve even faster speed while
maintaining better rendering quality than Instant-NGP (as
shown in Table 2, 3).

4.5. Scene Editing

Our explicit mesh representation naturally enables scene
editing. We can achieve texture editing (Fig. 9 (a)) and
object removal/insertion (Fig. 9 (b)) by locally modifying
the radiance features of vertices and removing/inserting the

(a
) T

ex
tu

re
 E

di
tin

g
(b

) O
bj

ec
t r

em
ov

al

Figure 9. Samples of scene editing. Please refer to our supplemen-
tary materials for more visualization results.

DNMPs. Please refer to our supplementary materials for
more visualization results.

5. Conclusion

We have presented a novel neural scene representation
for urban view synthesis based on the proposed Deformable
Neural Mesh Primitives (DNMPs), which combines the ef-
ficiency of classic meshes and the representation capabil-
ity of neural features. The entire scene is voxelized and
each voxel is assigned a DNMP to parameterize the geom-
etry and radiance of the local area. The shape of DNMP
is decoded from a compact latent space to constrain the de-
gree of freedom for robust shape optimization. The radiance
features are associated to each mesh vertex of DNMPs for
radiance information encoding. Extensive experiments on
two public outdoor datasets have verified the effectiveness
of the proposed components and demonstrated the state-of-
the-art performance of the proposed method. Moreover, due
to the compact and efficient mesh-based representation, we
achieve a fast inference speed and much lower peak mem-
ory compared with previous methods.

However, although the remarkable rendering quality and
resource efficiency have been achieved, the current version
of our framework is still based on the static-scene assump-
tion. In the future, we plan to extend our method to handle
moving objects for more general application scenarios.
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Barr. Implicit fairing of irregular meshes using diffusion
and curvature flow. In Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques,
pages 317–324, 1999. 4

[11] Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram Nevatia,
and Leonidas J Guibas. Curriculum deepsdf. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part VIII 16, pages
51–67. Springer, 2020. 3

[12] Evelyn Fix and Joseph Lawson Hodges. Discriminatory
analysis. nonparametric discrimination: Consistency prop-
erties. International Statistical Review/Revue Internationale
de Statistique, 57(3):238–247, 1989. 4

[13] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501–5510, 2022. 3

[14] Xiao Fu, Shangzhan Zhang, Tianrun Chen, Yichong Lu,
Lanyun Zhu, Xiaowei Zhou, Andreas Geiger, and Yiyi Liao.
Panoptic nerf: 3d-to-2d label transfer for panoptic urban
scene segmentation. In International Conference on 3D Vi-
sion (3DV), 2022. 3

[15] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and
robust multiview stereopsis. IEEE transactions on pattern
analysis and machine intelligence, 32(8):1362–1376, 2009.
3

[16] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Learning deformable
tetrahedral meshes for 3d reconstruction. Advances In Neu-
ral Information Processing Systems, 33:9936–9947, 2020. 3

[17] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 14346–
14355, 2021. 3

[18] Michael Goesele, Brian Curless, and Steven M Seitz. Multi-
view stereo revisited. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 2402–2409. IEEE, 2006. 2

[19] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5875–5884, 2021. 3

[20] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDon-
ald, and Werner Stuetzle. Mesh optimization. In Proceedings
of the 20th annual conference on Computer graphics and in-
teractive techniques, pages 19–26, 1993. 2

[21] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
et al. Kinectfusion: real-time 3d reconstruction and inter-
action using a moving depth camera. In Proceedings of the
24th annual ACM symposium on User interface software and
technology, pages 559–568, 2011. 2

[22] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry processing,
volume 7, 2006. 2

[23] Leif Kobbelt and Mario Botsch. A survey of point-based
techniques in computer graphics. Computers & Graphics,
28(6):801–814, 2004. 2

[24] Mark A Kramer. Nonlinear principal component analy-
sis using autoassociative neural networks. AIChE journal,
37(2):233–243, 1991. 3

[25] Zhuopeng Li, Lu Li, Zeyu Ma, Ping Zhang, Junbo Chen,
and Jianke Zhu. Read: Large-scale neural scene rendering
for autonomous driving. arXiv preprint arXiv:2205.05509,
2022. 2

[26] Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel
dataset and benchmarks for urban scene understanding in 2d



and 3d. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022. 2, 5

[27] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. Advances
in Neural Information Processing Systems, 33:15651–15663,
2020. 3

[28] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987. 3

[29] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7210–7219, 2021. 2, 3, 7

[30] Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues
Hoppe, Rohit Pandey, Noah Snavely, and Ricardo Martin-
Brualla. Neural rerendering in the wild. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6878–6887, 2019. 2

[31] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 2,
3, 5, 6, 7

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 2, 3, 7, 8

[33] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao,
Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fi-
dler. Extracting triangular 3d models, materials, and lighting
from images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8280–
8290, 2022. 3

[34] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc
Alexa. Laplacian mesh optimization. In Proceedings of
the 4th international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia,
pages 381–389, 2006. 4

[35] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Joerg H Mueller, Chakravarty R Alla Chaitanya, Anton
Kaplanyan, and Markus Steinberger. Donerf: Towards real-
time rendering of compact neural radiance fields using depth
oracle networks. In Computer Graphics Forum, volume 40,
pages 45–59. Wiley Online Library, 2021. 3

[36] Julian Ost, Issam Laradji, Alejandro Newell, Yuval Bahat,
and Felix Heide. Neural point light fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18419–18429, 2022. 2, 3, 4, 6, 7, 8

[37] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part III 16, pages 523–540. Springer, 2020. 3

[38] Martin Piala and Ronald Clark. Terminerf: Ray termination
prediction for efficient neural rendering. In 2021 Interna-
tional Conference on 3D Vision (3DV), pages 1106–1114.
IEEE, 2021. 3

[39] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10318–10327, 2021. 2, 3

[40] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 3

[41] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 14335–
14345, 2021. 3

[42] Konstantinos Rematas, Andrew Liu, Pratul P Srini-
vasan, Jonathan T Barron, Andrea Tagliasacchi, Thomas
Funkhouser, and Vittorio Ferrari. Urban radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12932–12942, 2022. 3

[43] Gernot Riegler and Vladlen Koltun. Stable view synthesis.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12216–12225, 2021.
2

[44] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 3

[45] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 2, 3, 4, 5

[46] Michael Schwarz and Hans-Peter Seidel. Fast parallel sur-
face and solid voxelization on gpus. ACM transactions on
graphics (TOG), 29(6):1–10, 2010. 2

[47] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid repre-
sentation for high-resolution 3d shape synthesis. Advances
in Neural Information Processing Systems, 34:6087–6101,
2021. 3

[48] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5459–
5469, 2022. 3

[49] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2446–2454, 2020. 2, 5

[50] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,
and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8248–8258, 2022. 2, 3

[51] Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo
Speciale, and Marc Pollefeys. Patchmatchnet: Learned
multi-view patchmatch stereo. In Proceedings of the



IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14194–14203, 2021. 3

[52] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In Proceedings of the Euro-
pean conference on computer vision (ECCV), pages 52–67,
2018. 3

[53] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
arXiv preprint arXiv:2106.10689, 2021. 3

[54] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen,
and Victor Adrian Prisacariu. Nerf–: Neural radiance
fields without known camera parameters. arXiv preprint
arXiv:2102.07064, 2021. 2, 3

[55] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf:
Point-based neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5438–5448, 2022. 2, 3, 4, 7, 8

[56] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan.
Mvsnet: Depth inference for unstructured multi-view stereo.
In Proceedings of the European conference on computer vi-
sion (ECCV), pages 767–783, 2018. 3

[57] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng,
and Angjoo Kanazawa. Plenoctrees for real-time rendering
of neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5752–
5761, 2021. 3

[58] Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sat-
tler, and Andreas Geiger. Monosdf: Exploring monocu-
lar geometric cues for neural implicit surface reconstruc-
tion. Advances in Neural Information Processing Systems
(NeurIPS), 2022. 3

[59] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 2, 3

[60] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 6, 7


