
Urban Radiance Field Representation with Deformable Neural Mesh Primitives
—-Supplementary Material

In this supplementary material, we provide: (1) more de-
tailed discussion on the implementation details; (2) the ad-
ditional experimental results; (3) the potential societal im-
pact of our method.

S-1. Implementation Details
S-1.1. Implementation and Training

The overall framework is implemented using Py-
Torch [11]. The differentiable rasterization is implemented
based on PyTorch3D [12]. The network Fθ is composed
of 8 layers with width 256 for opacity prediction and ad-
ditional 2 layers for view-dependent radiance value predic-
tion. In our lightweight version, the layer number and width
of the MLPs for opacity prediction are reduced to 2 and 64,
respectively. We use positional encoding with frequency
L = 4 to encode the view-dependent factors. As mentioned
in the manuscript, we use Mip-NeRF [1] to handle the non-
structure regions. Specifically, our implementation of Mip-
NeRF consists of 8 layers with width 256 for density predic-
tion and additional 2 layers for color prediction. The coarse
and fine networks of Mip-NeRF are both sampled 128 times
and the frequencies of positional encoding for coordinates
and view directions are set to 10 and 4, respectively. We
leverage Metashape [7] for point-cloud reconstruction on
KITTI-360 dataset [6], which is a software for large-scale
3D reconstruction and shows better reconstruction quality
than COLMAP [14, 13]. For Waymo dataset [15], we fol-
low NPLF [10] to use accumulated LiDAR point clouds for
scene voxelization. We optimize the shape for 50k itera-
tions and the neural rendering network for 100k iterations
with a batch size of 16384 rays. Adam [5] is used as the
optimizer with an initial learning rate of 5 × 10−4 and an
exponentially decayed factor of 0.999999.

S-1.2. Scene Editing

Our representation supports scene editing including tex-
ture editing, object removal/insertion, etc. These operations
are achieved by locally modifying the vertex radiance fea-
tures or by DNMP removal/insertion. Specifically, for tex-
ture editing, we only need to edit one 2D image and fine-
tune the vertex features corresponding to the edited regions

(practically implemented using masks in the losses). During
finetuning, the network parts Fθ are fixed. To achieve object
removal, we can remove the corresponding DNMPs and fill
the holes with the copied DNMPs from similar structures
of the other parts. Similarly, we can also insert the DNMPs
of the corresponding object to the desired positions in the
scene for object-level insertion. Please refer to our sup-
plemental video for more visualization results.

S-1.3. Loss Function

As mentioned in the manuscript, we encourage nor-
mal consistency and mesh smoothness with a regulariza-
tion loss Lregularize during the training of the auto-encoder.
Specifically, Lregularize consists of the normal consistency
loss Lnormal [4] and the Laplacian mesh smoothness loss
Lsmooth [9], i.e., Lregularize = Lnormal + Lsmooth.

The normal consistency loss is defined for each pair of
neighboring faces in the mesh. Denoting the surface normal
of two neighboring faces as n1

i ,n
2
i , normal consistency loss

can be calculated as

Lnormal =
∑
i

(1− cos(n1
i ,n

2
i )). (1)

To calculate the Laplacian mesh smoothness loss, a
Laplacian matrix L ∈ RN×N (N is the number of vertices)
is defined as

Lij =


−1, i = j

wij , {i, j} ∈ E

0, otherwise

(2)

where E is the collection of edges, and

wij =
ωij∑

{i,k}∈E ωik
, (3)

where ωij = 1 since we use uniform weights. Then, the
Laplacian mesh smoothness loss can be represented as

Lsmooth =
∑

∥LV∥2 , (4)

where V ∈ RN×3 is the matrix of vertex coordinates.

1



Optimization

Figure S-1. Optimization of DNMPs. DNMPs can be deformed
from spherical template meshes into various basic shapes (e.g.,
plane, pillar, curved surface, etc.), via optimizing the shape latent
codes.

S-1.4. Database Construction

To train the auto-encoder mentioned in Sec. 3.1 of the
manuscript, we build a database containing a large num-
ber of meshes. To this end, we first collect a set of recon-
structed point clouds (including reconstructed point clouds
from Multi-View Stereo (MVS), LiDAR point clouds, etc.).
Then, we chunk these point clouds into a set of local point-
cloud patches. Next, for each point-cloud patch, we deform
a unit spherical mesh to fit the shape of the patch. Specifi-
cally, we take the offsets for mesh vertices as learnable pa-
rameters and minimize the chamfer distance LCD between
the local point-cloud patch and the sampled points 1 on the
mesh used to fit the patch. The loss function LCD can be
formally represented as

LCD =
∑
i

min
pS
j ∈PS

∥∥pMi − pSj
∥∥2
2
+
∑
j

min
pM
i ∈PM

∥∥pMi − pSj
∥∥2
2
,

(5)
where PM and PS are sampled points on the mesh faces
and the local point cloud respectively. Finally, we create a
large database of local primitive meshes with well-defined
geometry to train our auto-encoder.

S-1.5. Optimization of DNMPs

To better illustrate the shape optimization process of DN-
MPs, we visualize several examples in Fig. S-1. It is shown
that with the optimization of shape latent codes z, DNMPs
can be deformed into various basic shapes (e.g., such as
planes, curved surfaces, and pillars), which constitute the
building blocks of entire scenes.

1The points are resampled in every iteration to improve the robustness.

Table S-1. Details of KITTI-360 dataset.
Sequence First frame Last frame

seq 1 715 794
seq 2 880 959
seq 3 1102 1181
seq 4 2170 2249
seq 5 2900 2979

S-1.6. Details of Dataset

KITTI-360 dataset. We cut 5 sequences from
drive 2013 05 28 drive 0009 sync in KITTI-360
dataset [6] (denoted as seq 1 to seq 5), the details are
shown in Table S-1.

Waymo dataset. For Waymo dataset [15], we follow
NPLF [10] to select 6 sequences containing mainly static
scenes. For completeness, we also provide the details of the
sequences here in Table S-2.

S-2. Additional Experimental Results
S-2.1. Comparison with MVS

To verify the effectiveness of our method, we directly
recover the meshes [7] based on the point clouds from
Multi-View Stereo (MVS) instead of using our DNMP-
based shape reconstruction. Then we attach radiance fea-
tures to the mesh vertices and adopt the same rendering
pipeline as our methods for fair comparisons. The exper-
imental results for novel view synthesis on the KITTI-360
dataset are shown in Table S-3. Our method significantly
outperforms the counterpart that uses meshes from MVS.
We also provide qualitative comparison results in Fig. S-2.
It is shown that the rendered images based on the meshes
from MVS have much more flaws which are usually caused
by the ubiquitous holes and noises in the outdoor point
clouds.

S-2.2. Comparison with the Baselines with Depth
Supervision

We further train the competitive baseline methods (i.e.,
Mip-NeRF [1] and Mip-NeRF 360 [2] by adding the ex-
tra depth supervision for better comparison. The evalua-
tion results on KITTI and Waymo datasets are shown in
Table S-4, S-5, respectively. The supervision from depth
speeds up their convergence and modestly improves their
performances. Their PSNRs and SSIMs are comparable to
ours but their performance regarding LPIPS is still inferior
to ours. Besides, our method is also much more efficient in
terms of runtime and memory consumption.

S-2.3. Comparison with Large-scale NeRFs

Table S-6 shows the performance of BungeeNeRF [17]
and Mega-NeRF [16] on KITTI-360 dataset. Mega-NeRF



Table S-2. Details of Waymo dataset.

Set Segment Name/ID First frame Last frame

validation 0000 segment-10247954040621004675 2180 000 2200 000 with camera labels 0 80
validation 0000 segment-1071392229495085036 1844 790 1864 790 with camera labels 135 197
validation 0000 segment-11037651371539287009 77 670 97 670 with camera labels 0 164
validation 0001 segment-13469905891836363794 4429 660 4449 660 with camera labels 0 197
validation 0002 segment-14333744981238305769 5658 260 5678 260 with camera labels 0 198
validation 0002 segment-14663356589561275673 935 195 955 195 with camera labels 0 197

Ground Truth MVS Ours

Figure S-2. Qualitative comparison of novel view synthesis on KITTI-360 dataset with neural rendering using meshes reconstructed from
Multi-View Stereo (MVS). Cropped patches are scaled to highlight details. Reconstructed meshes from MVS are incomplete (e.g., the
upper part of the car in the cropped patches in the first row) and contain occlusions (e.g., the building in the bottom-right corner of the
cropped patches in the second row), leading to blurry and unreal rendering results.

Table S-3. Comparison with neural rendering using meshes re-
constructed from Multi-View Stereo (MVS). The comparison is
based on KITTI-360 dataset.

Methods PSNR↑ SSIM↑ LPIPS↓

MVS [7] 21.82 0.817 0.341
Ours 23.41 0.846 0.305

Table S-4. Performance comparison of novel view synthesis with
other competitive baselines on KITTI-360 dataset. † means the
method is trained with additional depth supervision.

Method PSNR↑ SSIM↑ LPIPS↓

Mip-NeRF† [1] 23.26 0.815 0.404
Mip-NeRF 360† [2] 23.43 0.837 0.354

Ours 23.41 0.846 0.305

Table S-5. Performance comparison of novel view synthesis
with other competitive baselines on Waymo dataset. † means the
method is trained with additional depth supervision.

Method PSNR↑ SSIM↑ LPIPS↓

Mip-NeRF† [1] 27.02 0.881 0.449
Mip-NeRF 360† [2] 27.46 0.895 0.393

Ours 27.62 0.892 0.381

extends vanilla NeRFs by decomposing the scene into mul-
tiple regions, while the performance is still inferior to ours.
BungeeNeRF improves view synthesis by training NeRFs
from far to near in a progressive manner, which is suitable
for bird-eye-view images. We find that it performs similarly
to vanilla NeRFs in our scenes. We deem that their progres-
sive strategy does not fit well to the vehicle-captured data of
urban scenes.

Table S-6. Comparison with large-scale NeRFs. The comparison
is based on KITTI-360 dataset.

Methods PSNR↑ SSIM↑ LPIPS↓

BungeeNeRF [17] 22.02 0.788 0.429
Mega-NeRF [16] 23.15 0.826 0.326

Ours 23.41 0.846 0.305

S-2.4. Comparison with MobileNeRF

Table S-7 shows the novel view synthesis performance of
MobileNeRF [3] on KITTI-360 dataset. The performance
of the continuous version of MobileNeRF (Stage 1 with
high computational overhead) is inferior to ours, and its dis-
cretized version (Stage 3) performs worse. We infer that this
could be caused by MobileNeRF’s non-tight mesh represen-
tation, which degrades the generalization ability if trained



0.
5m

 D
N

M
P

2m
 D

N
M

P
G

ro
un

d 
Tr

ut
h

Figure S-3. View synthesis results based on DNMPs of different
sizes. Even only based on the DNMP with a dimension of 2 me-
ters, the synthesized images are still of acceptable quality, though
the texture details are lost compared to results of 0.5m-DNMPs.

with limited views.

Table S-7. Comparison with MobileNeRF.
Methods PSNR↑ SSIM↑ LPIPS↓

MobileNeRF
Stage 1 23.18 0.823 0.350
Stage 2 22.10 0.784 0.412
Stage 3 20.80 0.752 0.445

Ours 23.41 0.846 0.305

S-2.5. Analysis of Storage Budgets

In terms of storage budgets, the methods like Point-
NeRF [18] need to store point-wise features of a dense
point cloud for a scene. Their feature numbers can be
5× more than ours, and their feature dimension is usually
higher (typically > 2×) than ours. Instant-NGP [8] reduces
storage budgets by using multiresolution hash tables, while
the overall storage budget is still about 2× of ours thanks
to our compact surface-aligned representation (463MB ver-
sus 243MB for one sequence in our scenarios). Moreover,
we can further reduce the storage budgets by increasing
the DNMPs’ radii with acceptable rendering quality com-
promises. As shown in Table 2 in the main manuscript
(columns under DNMP radius) and Fig. S-3, our perfor-
mance is tolerant to large DNMP radii. For example, in-
creasing the radius to 2 meters only leads to < 5% degra-
dation in PSNR but reduces ∼10× vertex feature numbers.

S-2.6. Limitations in Indoor Scenes

For indoor scenarios, we usually could acquire the ini-
tial 3D reconstruction from either ToF cameras or MVS al-
gorithms. (1) ToF cameras have difficulties in measuring

the depth of specular or absorbing materials, e.g., the mon-
itors in Fig. S-4, which results in empty holes in the initial
3D reconstruction. Nevertheless, our method can still per-
form well (shown in the 2nd and 3rd columns of Fig. S-4)
with such incomplete initialization, thanks to the comple-
tion ability of hierarchical DNMPs. (2) When using clas-
sic MVS for initial 3D reconstruction, the missing recon-
struction for textureless regions like white walls could be
too large for our method to recover the scene geometry rea-
sonably, leading to unsatisfactory results. We could exploit
depth completion techniques or develop primitive growing
to mitigate this issue in the future.

Ground-truth depth Rendered image Rendered depth

Figure S-4. A sample of rendering results on ScanNet dataset.

S-2.7. Novel Semantic Synthesis

Our representation can also be adapted to novel seman-
tic synthesis by additionally estimating the semantic labels
with the implicit function (similar to the radiance-value es-
timation). Fig. S-5 visualizes several cases. The successful
application of our method to this task shows the potential
for being deployed in semantic mapping, low-cost semantic
annotation systems etc.

S-2.8. More Visualization Results

We provide additional visualization comparisons on
KITTI-360 dataset and Waymo dataset in Fig. S-6, S-7, re-
spectively. Please refer to our supplemental video for more
visualization results.

S-3. Potential Negative Societal Impact
This paper proposes a novel neural representation for

novel view synthesis in urban scenes. We believe this tech-
nology has a positive impact on society. However, there is
no guarantee that it could not be used in applications with
negative social impacts. For example, this technique can be

Rendered image Rendered semantic segmentation

Figure S-5. Novel semantic synthesis.



OursPoint-NeRFGround Truth Mip-NeRF 360Mip-NeRF

Figure S-6. Qualitative comparison of novel view synthesis on KITTI-360 dataset. Cropped patches are scaled to highlight details. Due
to the explicit and accurate surface modeling, the proposed method significantly outperforms baseline methods and can effectively recover
texture details.

OursPoint-NeRF NPLFGround Truth Mip-NeRF 360

Figure S-7. Qualitative comparison of novel view synthesis on Waymo dataset. Cropped patches are scaled to highlight details. Due to
the explicit and accurate surface modeling, the proposed method significantly outperforms baseline methods and can effectively recover
texture details.

applied to synthesize fake scenes, which can further be used
to generate fake events and news.

References
[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-

ral radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5855–5864,
2021. 1, 2, 3

[2] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern



Recognition, pages 5470–5479, 2022. 2, 3
[3] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-

drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. arXiv preprint arXiv:2208.00277, 2022.
3

[4] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H
Barr. Implicit fairing of irregular meshes using diffusion
and curvature flow. In Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques,
pages 317–324, 1999. 1

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, 2015. 1

[6] Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel
dataset and benchmarks for urban scene understanding in 2d
and 3d. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022. 1, 2

[7] Agisoft LLC. Agisoft metashape, 2022. 1, 2, 3
[8] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 4

[9] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc
Alexa. Laplacian mesh optimization. In Proceedings of
the 4th international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia,
pages 381–389, 2006. 1

[10] Julian Ost, Issam Laradji, Alejandro Newell, Yuval Bahat,
and Felix Heide. Neural point light fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18419–18429, 2022. 1, 2

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
1

[12] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 1

[13] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 1

[14] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 1

[15] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2446–2454, 2020. 1, 2

[16] Haithem Turki, Deva Ramanan, and Mahadev Satya-
narayanan. Mega-nerf: Scalable construction of large-
scale nerfs for virtual fly-throughs. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12922–12931, 2022. 2, 3

[17] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao,
Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin.
Bungeenerf: Progressive neural radiance field for extreme
multi-scale scene rendering. In European conference on
computer vision, pages 106–122. Springer, 2022. 2, 3

[18] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf:
Point-based neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5438–5448, 2022. 4


