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Abstract
Advanced deep learning technology has made great progress in generic object detection of autonomous driving, yet it is still 
challenging to detect small road hazards in a long distance owing to lack of large-scale small-object datasets and dedicated 
methods. This work addresses the challenge from two aspects. Firstly, a self-collected long-distance road object dataset (TJ-
LDRO) is introduced, which consists of 109,337 images and is the largest dataset so far for the small road object detection 
research. Secondly, a vanishing-point-guided context-aware network (VCANet) is proposed, which utilizes the vanishing 
point prediction block and the context-aware center detection block to obtain semantic information. The multi-scale feature 
fusion pipeline and the upsampling block in VCANet are introduced to enhance the region of interest (ROI) feature. The 
experimental results with TJ-LDRO dataset show that the proposed method achieves better performance than the representa-
tive generic object detection methods. This work fills a critical capability gap in small road hazards detection for high-speed 
autonomous vehicles.
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Abbreviations
ROI  Region of interest
TJ-LDRO  Tongji long-distance road object
VCANet  Vanishing-point-guided context-aware 

network
VPT  Vanishing point

1 Introduction

Detecting small road hazards in a long distance, such as lost 
cargo on highway, is a very demanding capability for high-
speed autonomous vehicles. According to the US Department 
of Transportation, nearly 150 people were killed annually due 
to the traffic accidents involving lost hazardous cargo [1]. 
Although small road hazards detection is very critical for traf-
fic safety, it is rarely addressed for autonomous vehicles. In 

order to fill this gap, a highly efficient small object detection 
system is proposed together with a dedicated long-distance 
road object dataset (TJ-LDRO dataset).

It has been accepted in past research [2–5] that the detec-
tion of small road object is quite an enormous challenge. 
Radar and Lidar are two of the most widely used active sen-
sors applied in autonomous vehicles for target detection and 
tracking. Although they could provide high-accuracy meas-
urement of point-wise distance and velocity, a low angular 
resolution is almost inevitable and leads to the failure of 
the detection of small objects. For instance, a typical Velo-
dyne HDL-64E Lidar has a vertical angular resolution of 
about 0.4◦ . Assuming that three consecutive points are the 
minimum requirement for a true detection, the maximum 
detecting distance of this Lidar is shorter than 15 m for a 
small vertical object of 20 cm. Thus, when the vehicle is 
at a high speed, it is rather dangerous to detect this kind of 
small obstacles even at a long distance. Although dynamic 
vision sensors show great potential in detecting and tracking 
high-speed objects, the limited spatial resolution may lead to 
the failure of small object detections [6]. However, cameras 
often provide very high spatial resolution at a relatively low 
cost, which could help cope with this challenge.

Since a small object covers very limited image area and 
provides a rather small amount of texture information, the 
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detection of which is more difficult than that of large ones 
such as cars and trucks in close range. Recently, most of 
state-of-the-art object detection methods [7–9] follow the 
region-based paradigm. The detection performance highly 
relies on the discriminative capabilities of detecting the 
feature lying in the bounding box, which requires sufficient 
training data of the objects. Whereas, the inadequate feature 
representation from object regions gives rise to difficulty in 
the detection of small objects. Therefore, on the condition 
that the methods are applied to detect the small road hazards, 
the performance would suffer significant reduction.

Many works have addressed the challenges in several 
aspects. Considering the quite limited data for small road 
object detection, the Lost and Found dataset [1] is intro-
duced. To the authors’ best knowledge, it is the only public 
dataset dedicated to the small road object detection. The 
Lost and Found dataset consists of 2104 annotated frames 
of 112 raw video sequences. Nevertheless, compared with 
other generic object detection datasets such as PASCAL 
VOC [10] and MSCOCO [11], the size of the Lost and 
Found dataset is still far from satisfying the standard deep 
learning approaches. Aiming at tackling the challenges with 
limited appearance information of the small objects, many 
approaches are proposed based on state-of-the-art object 
detection frameworks [12–14] , which further revise the net-
work architecture by putting special emphasis on embedding 
the multi-scale representation [15–17], context information 
[18, 19] and super-resolution [20, 21]. However, these meth-
ods exaggerate the importance of the recognition of each 
separate region and pay little attention to the crucial seman-
tic correlation among objects, regions and visual patterns.

To meet the challenge and solve the issue, a vanishing-
point-guided method is proposed in order to focus more on 
the small objects as well as filter other disturbance, through 
which the feature is upsampled and fused in a multi-scale 
feature fusion pipeline. Moreover, to enrich the feature of 
small objects, a context-aware method is designed to encode 
the context information as a part of the small objects and 
then discuss the inference of the context. The major contri-
butions of this paper can be summarized in the following 
three aspects:

• A new large-scale dataset dedicated to small road hazard 
detection1;

• A new context-aware method for small object detection, 
which encodes the context information as a part of the 
small objects and enriches the features;

• A vanishing-point-guided method to focus more on the small 
objects, through which the feature maps can be upsampled 
and fused in a multi-scale feature fusion pipeline.

The main content of this work will cover six parts. Sec-
tion 2 briefly reviews the related works about the small 
object detection methods and datasets. Section 3 introduces 
the self-collected TJ-LDRO dataset. Section 4 presented 
the proposed vanishing-pointguided context-aware network 
(VCANet). Section 5 gives the experimental results and 
ablation studies of VCANet on TJ-LDRO dataset. Section 6 
concludes this work.

2  Related Works

Most earlier research on small object detection are on detect-
ing vehicles in aerial images [22], flying objects in the sky 
[23, 24] or obstacles on the road [1, 2], using traditional 
methods with hand-crafted feature and shallow classifiers. 
Recently, some small object detection methods adapt deep 
learning technology as well as improve the detection per-
formance of small objects by modifying the generic object 
detection frameworks on aspects including multi-scale rep-
resentation, context information, image resolution, candidate 
region extraction and so on. This section first illustrates the 
related works of existing small object detection methods, 
and then describes the few public datasets tailored for small 
object detection.

2.1  Detection Methods with Multi‑scale 
Representation

Multi-scale representation has been proved to be useful 
for many recognition tasks, such as semantic segmenta-
tion [25–27] and object detection [13, 18, 28], especially 
for the small object detection. Most of the two-stage detec-
tors, such as RCNN [29], Fast-RCNN [12] and Faster-RCNN 
[8], merely use the last layer of feature maps to classify and 
locate the target object. As a result, although these state-of-
the-art algorithms are good at detecting generic objects, they 
present poor performance as applied to detect small objects. 
To address this matter, multi-scale representation and fuse 
multi-layer feature maps are applied in Refs. [13, 17, 28, 
30–33] to improve the detection performance of small 
objects. MR-CNN [17] performs a multi-scale deconvolu-
tional operation upsampling the feature maps of deep layers 
and concatenates them with those of shallow layers. SSD 
[13] uses feature maps from shallow layers for small object 
detection, and it could exploit feature maps from deeper lay-
ers for larger object detection. For further improvement in 
the detection accuracy, DSSD [28] adds additional deconvo-
lutional layers to the end of SSD [13], which combines the 
prediction layers and their deconvolutional layers to ensure 
more accurate detection of small objects. MDSSD [15] also 
presents a deconvolutional fusion block and uses skip con-
nection to fuse more context information. A multi-level 1 https:// github. com/ ispc- lab/ VCANet.

https://github.com/ispc-lab/VCANet


VCANet: Vanishing-Point-Guided Context-Aware Network for Small Road Object Detection  

1 3

feature fusion method based on SSD is proposed in Ref. 
[30], in which two modules of concatenation and element-
sum are added to the basic SSD backbone to fuse the infor-
mation of different feature layers in diverse ways. For avoid-
ing mechanical stacking of multi-scale feature maps, Ref. 
[16] introduces a channel-aware deconvolutional network 
to study the relationship among feature maps in various 
channels.

2.2  Detection Methods with Context Information

In the physical world, visual objects appear in a specific 
environment and usually coexist with other related objects. 
Sufficient evidence in neuroscience [34, 35] has illustrated 
that context plays a crucial role in human recognition of 
target objects. Detection of small objects has been stuck in 
a dilemma, mainly because small objects contain too little 
information to be detected accurately only by their own fea-
ture. Ref. [36] argued that one could utilize image evidence 
beyond the object extent, formulating as “context.” And 
it also presents a simple human experiment where users 
attempt to discriminate the true and false positive faces 
[36]. Obviously, humans need context to accurately classify 
tiny faces. Moreover, previous studies [37–39] have shown 
that appropriate context information is beneficial for object 
detection and recognition, especially when the feature of 
target object is insufficient for the small size, occlusion or 
poor image quality. Ref. [19] first introduced ContextNet to 
encode the context clue around small object proposal. Ref. 
[18] proposed inside-outside net (ION), an object detector 
that exploits information both inside and outside the region 
of interest (ROI). Additionally, Ref. [40] considered each 
column of feature maps as a spatial sequence. Then, a novel 
LSTM-based encoder–decoder, adding an attention mecha-
nism, is used to explore detailed contextual information.

2.3  Detection Methods with Image Resolution 
and Others

Another common way to detect small objects is to upscale 
the resolution of raw images. For instance, Ref. [41] 
upscaled the input images and generated high-resolution 
feature maps. Ref. [20] introduced generative adversarial 
network (GAN) to reconstruct the super-resolution image, 
which significantly enriches the information of small objects. 
Ref. [21] constructed a perceptual generative adversarial 
network (PGAN) model to improve detection performance 
via narrowing the representation difference between small 
objects and the large ones.

In addition, a novel region context network (RCN) 
was designed in Ref. [42], which is used to generate the 
most likely candidate regions with small objects and their 

semantic information. Classification and regression are per-
formed on these most optimal regions to reduce the memory 
usage and improve the location accuracy. As a result of 
the downsampling operation, the small object feature is 
reduced so that the recall rate becomes much lower. Ref. 
[43] put forward an atrous region proposal network (ARPN) 
to explore object contexts in multiple scales and incorpo-
rate atrous convolution into Fast R-CNN, thus improving 
detection rate of small object. Ref. [44] established Shifted 
SSD, which relieves the influence of the discreteness of 
the anchor method by moving the feature maps. Ref. [45] 
presented small-object-sensitive-CNN for small traffic signs 
detection where the large input image is cropped into small 
patches.

2.4  Related Dataset for Small Object Detection

In addition to object detectors, the large and high-quality 
dataset is another critical factor of deep learning technol-
ogy. Although there are excellent datasets such as MSCOCO 
[11] and PASCAL VOC [10], focusing on generic objects 
detection task, datasets dedicated to small object detection 
are rather rare. Moreover, the small object detection data-
sets either have a small number of images or are inconsist-
ent with our research scenes, so they could not meet the 
requirement of small road hazards detection. For example, a 
lost-cargo dataset was employed in Ref. [1] comprising only 
2104 frames with pixel-level annotations of obstacle and 
free-space, which are collected from 13 different street sce-
narios, and involve 37 different combinations of objects. A 
dataset was applied in Ref. [46] for road garbage detection, 
consisting of 801 images and 966 bounding boxes. Ref. [47] 
built the Tsinghua-Tencent 100K dataset, including 100,000 
images in 100 classes and 30,000 traffic sign instances. Ref. 
[19] established a small object detection dataset using a sub-
set images from the MSCOCO dataset [11] and the Scene 
UNderstanding database (SUN) [48].

3  TJ‑LDRO: TongJi Long‑Distance Road 
Object Dataset

Research based on deep learning technology requires a large 
amount of data for tests, and the performance of generic 
detectors would degrade significantly when there exists huge 
bias of datasets which mainly result from different applica-
tion domain. For the long-distance road object detection, 
a new dataset is collected in this work from both real and 
virtual simulation environment, called “TJ-LDRO Dataset.” 
ZED binocular cameras and test vehicles are employed to 
capture real-world data. AirSim [49] and Unreal Engine4 
[50] are applied to create virtual data in a simulation envi-
ronment. The dataset has collected a total of 109,337 images, 
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each of which is labeled in detail. Furthermore, this dataset 
has been tested with the proposed small object detection 
framework in the following sections, providing basis for 
final superior detection performance. The statistics of the 
TJ-LDRO Dataset is shown in Table 1. The pixel distance 

statistics between the object and the road vanishing point 
are shown in Fig. 1.

3.1  TJ‑LDRO Dataset Collected in Real‑World 
Environment

In order to include as many scenes as possible in the real 
environment and to ensure the robustness of following test 
results, the real-world dataset is collected in various weather 
and light environments such as sunny, cloudy, rainy, and 
evening. What’s more, different disturbance is estimated in 
real scenes such as shade, leaves, straights, curves, street 
lights, car lights and so on. Some of the weather and scenes 
are shown in Fig. 2, where Fig. 2a–f are selected from 
the real-word environment under six different conditions, 
Fig. 2g–l are selected of six distances from the objects, 
Fig. 2m–r are selected from the virtual environment under 
six different conditions.

As the road detection targets, 32 selected objects own 
the most probability to appear on the road, including road 
cones, warning signs, plastic box, children’s cars, etc., as 
shown in Fig. 3. These objects are composed of 60 com-
binations of different number or different types of objects. 
The combinations vary greatly from each other in order to 
cover the real-world situation as much as possible. To obtain 
multi-scale images of each combination in the same field 
and scene, comprehensive data are collected from different 
distance from the camera, as a result getting 798 pieces of 
videos. It is premised that the maximum distance between 
the camera and the target objects is about 80 m, and the 
minimum distance is about 10 m. Images are taken in the 
interval of 15 frames, and each image is acquired when 
vehicle moves forward about 7 m. Figure 2 shows 6 images 
with six distances from the objects. The selected 32 objects 
are classified into 18 categories corresponding to 18 labels 
respectively, as shown in Table 1. The ground-truth of the 
objects as well as the road vanishing point in each image are 
annotated by using bounding box, as shown in Fig. 4. The 
vanishing point is a point where the parallel lines in a three-
dimensional space converge into a two-dimensional plane 
by a graphical perspective. Herein, the road vanishing point 
is defined as the intersection of road edges. Images with a 

Fig. 1  The statistics of the TJ-LDRO Dataset: a The relationships 
between the count of objects and the distance from them to the van-
ishing points; b The distribution of objects from the vanishing point. 
The area of the dots is proportional to the number of the objects

Table 1  Statistics of the TJ-LDRO dataset in real world. Relative area of each instance is computed as the ratio of the bounding box area over 
the image area

Category Tyre Bucket Chair Plastic box Traffic cone Fire extinguisher Warning sign Car parts Bicycle

Number of images 655 3265 826 3754 1152 440 495 1061 477
Median relative area 0.011 0.010 0.023 0.013 0.014 0.009 0.018 0.001 0.026

 Category Trunk Scooter Tricycle Pedestrian Dog Deer Woven bag Carton Plank

Number of images 570 278 874 711 830 707 412 384 73
Median relative area 0.013 0.032 0.032 0.024 0.029 0.031 0.019 0.013 0.013
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bounding box larger than 96 × 96 pixels are discarded, con-
sidering the size of small objects. After deleting the unquali-
fied images, 19,337 images are obtained, including 14,474 
positive samples containing 17,284 bounding boxes of small 
objects and 4,863 negative samples with no objects. The size 
of each image is 2208 × 1242.   

3.2  TJ‑LDRO Dataset Collected in Virtual 
Environment

The TJ-LDRO dataset is enriched in the virtual environ-
ment, in view of the safety and difficulty of collecting a large 
amount of the TJ-LDRO images in the real environment, the 
advantages of convenient, diverse scenes, and high efficiency 
in data collection in the virtual environment.

In the virtual simulation environment, 7 scene models 
are selected from different places such as urban city, suburb, 
small town, village, mountain roads, etc., as well as several 
different weather such as sunny, cloudy, rainy, snowy, fogy, 
dusty and so on. Part of the virtual places and weathers are 
shown in Fig. 2. 187 object models are carefully identified 
to form 400 combinations. Similar to the real environment, 
the same collection method is adopted in the virtual environ-
ment. The distance between objects and the virtual camera 

is from 20 to 80 m. Each image is collected at a fixed dis-
tance of about 7 m, and a total of 15 images are collected 
in each photographing period. A total of 90,000 images are 
collected, and the size of each image is 2208 × 1242 . Each 
image includes three formats: original image, depth image 
and segmentation image. In the segmentation image, each 
object corresponds to one label, and both of the ground and 
non-ground parts have their unique labels.

In addition, a random swing of 0◦ to 10◦ is added to the 
virtual vehicle to simulate the real vehicle as much as pos-
sible. In order to avoid the singleness of objects position, 
5 positions are selected on each collection road, and each 
object could randomly select these positions. For ensuring 
the diversity of object angles, a horizontal random rotation 
of 0◦ - 360◦ is set for each object at each position. At each 
image taken, the virtual vehicle randomly swings an angle to 
left or right, then the object would randomly pick a position 
while rotating horizontally at an angle.

Fig. 2  Some examples of weather and scenes under different disturbance

Fig. 3  Collection of small objects included in the TJ-LDRO dataset

Fig. 4  Annotation of small object and vanishing point
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4  Vanishing‑Point‑Guided Context‑Aware 
Network

The overall architecture of the proposed VCANet is illus-
trated in Fig. 5. Our VCANet has four blocks including the 
multi-scale features fusion block (shown as blue), the van-
ishing point (VPT) prediction block (shown as purple), the 
vanishing-point-guided upsampling block (shown as red) 
and the context-aware object center detection block (shown 
as green). Firstly, the backbone network, a standard network 
pretrained on ImageNet [59] (e.g., ResNet [51]), takes an 
image I as input and outputs the 32× downsampled feature 
map C5. Then, features in C5 enters into the VPT prediction 
block to obtain the vanishing point (see Sect. 4.1). Next, 
in order to fuse the low-level detailed information and the 
high-level semantic information, the fusion block merges 
each series of earlier multi-scale features into stage-by-stage 
upsampled layers in corresponding size, and outputs the 8× 
upsampled feature map U3. After that, guided by vanishing 
point, a ROI of fixed size is generated and mapped to the 
corresponding area of original image I and feature map U3. 
In this case, the feature maps of ROI are further upsampled 
4× and finally matched with the resolution of original image 
I via the upsampling block (see Sect. 4.4). The multi-scale 
features fusion pipeline is described in detail in Sect. 4.2.

According to the principle of perspective, most of the 
small road hazards near vanishing points are tiny, while the 

size of that grows larger as the hazard moves away from 
the vanishing point. The proposed method uses vanishing 
point feature to sense tinier and further objects on a deeper 
yet limited region of feature maps, thus achieving a trade-
off between speed and accuracy. Otherwise, the larger and 
nearer ones can also be detected satisfyingly from the rich 
representation provided by the fusion block simultaneously. 
The end of VCANet is the context-aware center detection 
block, which takes the multi-scale fused feature maps 
as input and predicts the center point of each object (see 
Sect. 4.3).

4.1  VPT Prediction Block

The VPT prediction block is based on the work of Ref. [52], 
and a quadrant mask is used to divide the whole image into 
four sections. The VPT is the intersection of these four quad-
rant sections and could be inferred with the structure infor-
mation of full global scene. Besides, an end-to-end method 
is proposed to generate the location of a VPT, different from 
the probability-based method proposed in Ref. [52]. In con-
sideration of the distinctive feature maps of quadrant mask 
(illustrated in Fig. 6), a new VPT is presented, predicting the 
location of VPT from the mask directly. Accordingly, the 
VPT prediction is divided into two subtasks: quadrant mask 
generation task and VPT prediction task.

Fig. 5  The overall architecture of the proposed VCANet
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4.1.1  Quadrant Mask Generation Task

An illustration example of quadrant annotation and quadrant 
mask is depicted in Fig. 6. The quadrant mask generation 
task is formulated as semantic segmentation via the cross-
entropy loss Lseg . Four channels for the outputs are defined 
to stand for the four sections divided by VPT, each keeps 
the same size as C5.

4.1.2  VPT Prediction Task

The VPT prediction task is regarded as a classification 
task. As shown in Fig. 6, every pixel in the VPT heatmap 
is identified to be VPT or not. Note that determining an 
“exact” VPT is difficult, thus it is harder to train the VPT 
utilizing the hard-designation of positives. Hence, similar 
to Ref. [53], a 2D Gaussian mask G(.) is applied to reduce 
the ambiguity of negatives surrounding the positives at the 
center of each positive VPT:

where (x0, y0) is the coordinate of VPT, and the variance � is 
relative to the diameter of Gaussian mask. Here, the diam-
eter d is set to 9 and the � to d

6
 . Thus, the VPT prediction loss 

LVPT can be defined as

where pij is the confidence score indicating whether there 
is a VPT at location (i, j), and yij is the ground-truth label 
computed by Eq. 1, note that yij = 1 represents the positive 
location. � and � are hyper-parameters and � = 2 and � = 4 
during training as suggested in Ref. [53].

(1)G(i, j) = e
−

(i−x0)
2+(j−y0)

2

2�2

(2)LVPT = −

H∑

i=1

W∑

j=1

p̂ij,

(3)p̂ij =

{
(1 − pij)

𝛼 log (pij), if yij = 1

(1 − yij)
𝛽(pij)

𝛼 log(1 − pij), otherwise

4.2  Multi‑scale Features Fusion Pipeline

It is generally believed that low-level feature maps reserve 
more localization information, while the high-level ones 
have more semantic information because of their larger 
receptive fields. Therefore, inspired by Refs. [54, 55], a 
multi-scale feature fusion pipeline is presented to introduce 
the semantic information of high-level feature maps to the 
low-level ones, so that the fusion feature maps have both rich 
sematic information and abundant localization information.

Figure 7 shows the multi-scale feature fusion pipeline 
used in both features fusion block and upsampling block. 
Firstly, the high-level feature maps are upsampled by a 
deconvolutional layer to match the height and width of the 
low-level ones, and a 1 × 1 convolutional layer is applied 
to the low-level ones to match the channels. What is more, 
since the low-level and high-level feature maps have differ-
ent scales, a L2-normalization is used to rescale their norms 
to 10, as mentioned in Ref. [55]. Then, the two feature maps 
are concatenated together and the final fusion feature is 
generated by a 3 × 3 convolutional layer. The L2 Norm is 
formulized as follows:

where X = (x1, x2,… , xc) is a c-dimensional input, 
��X��2 = (

∑c

i=1
�xi�2)

1

2 is the L2 norm of X.

4.3  Context‑Aware Center Detection Block

4.3.1  Context‑Aware Ground Truth Generation

As shown in Fig. 8, a target object is too small in the images 
to provide enough feature to be identified, which gives rise 
to a great challenge of learning the representation of a small 
object only from itself. Previous studies such as Refs. [19, 
56] indicate that the context can provide additional informa-
tion of objects, helping make representations. In order to 
bridge context and objects, the related area is divided into 

(4)�̂ =
�

||�||2

Fig. 6  Output visualization of quadrant based VPT prediction block

Fig. 7  The architecture of the multi-scale features fusion pipeline
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two parts: the object area and the context area. Based on 
this, Eq. 1 is modified into a Context-aware Ground Truth 
Generation method as follows:

in which

where m2 is used to distinguish the context area from 
the object area, r is the circumradius of the ground-truth 
bounding box, and d2 = (i − x0)

2 + (j − y0)
2 . p and q are the 

hyper-parameters to adjust the influence of the object and 
the context.

4.3.2  Context‑Aware Center Detection Block

Referring to the context-aware ground truth genera-
tion method, the context-aware center detection block is 
designed. It takes the fused feature maps U3 as inputs and 
has two branches including the center detection branch and 
the offset regression branch. The loss function Lcen of the 
center detection branch is the same as Eq. 2. More impor-
tantly, it is found that the center heatmap outputted by center 
detection branch is downsampled as shown in Fig. 5, leading 
the location P = (x, y) in the original image to correspond to 
the location P� = ([

x

n
], [

y

n
]) in the center heatmap, where n 

is the downsampling factor. Hence, once P′ is remapped to 
P, the precision would be lost, thus affecting the accuracy 

(5)G(m2) = e
−

m2

2�2

(6)m2 = M(d2) =

{
pd2, if d2 ≤ r2

qd2 − (q − p)r2, if d2 > r2

of center detection. To address this issue, an offset regres-
sion branch is applied to predict the offset before remap-
ping center prediction result to original image. The offset is 
defined as follows:

where ok , xk and yk are, respectively, the offset, x and y coor-
dinating for center k. Specifically, the smooth L1 loss Loff is 
adopted only at the ground-truth center locations.

4.4  Upsampling Block

ROI feature maps and ROI images are generated, using the 
upsampling block as inputs by mapping the location of VPT 
to fused feature map U3 and the original image I. Due to the 
small size of target object, even 4× downsampling would 
cause serious loss of information. In order to introduce more 
detailed information and enhance the model performance on 
rather small object, the 4× upsampled ROI feature maps and 
original ROI images are fused. The loss function Lup is the 
same as Lcen . But when generating the ground truth, only 
the objects smaller than 32 × 32 are selected while ignoring 
the others. Moreover, since the final feature map keeps the 
same resolution with original ROI image, the offset of center 
detection would not exist and corresponding loss Loff is of 
no significance.

4.5  Implementation Details

According to the task of small road hazard detection, the 
VCANet is proposed as an end-to-end and fully convolu-
tional neural network architecture. The convolutional layer 
is only used to extract feature and the downsampling is real-
ized by pooling layer. In order to enlarge the receptive field, 
dilated convolution is applied to both VPT prediction block 
and center detection block, which can provide more global 
and semantic information. Final loss function is the sum of 
loss functions from all mentioned blocks, which is clarified 
as follow:

5  Experiments of VCANet

In this section, the VCANet is evaluated on the TJ-LDRO 
dataset. The experimental settings are introduced first. Then 
experiments are compared with the state-of-the-art technolo-
gies. Finally, ablation studies and experimental results are 
discussed.

(7)ok =
(xk
n
−

[xk
n

]
,
yk

n
−

[yk
n

])

(8)L = Lseg + LVPT + Lcen + Loff + Lup

Fig. 8  Illustration of the Context-aware Ground Truth Generation: a 
is the original image; b is the 4 times upsampled result of the area 
covered by the yellow rectangle in a; c shows 3 different area related 
to the target object: the red rectangle is the ground-truth bounding 
box, the yellow circle represents the object area, which is the circum-
circle of the red rectangle, and the blue annulus represents the context 
area; d shows the generated ground-truth as a heatmap
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5.1  Experimental Settings

5.1.1  Experimental Dataset: TJ‑LDRO Dataset

The VCANet is comprehensively evaluated on the TJ-LDRO 
dataset. TJ-LDRO dataset includes 14,474 annotated images 
of 18 classes of objects. As all the objects are rather small 
in the dataset, it is almost impossible to identify the types of 
objects. Besides, the autodrive task focuses more on localiz-
ing the obstacles on the road rather than distinguishing their 
classes. Herein, when training and testing, all the objects are 
regarded as a single class, as only the localization perfor-
mance is stressed instead of the classification.

5.1.2  Evaluation Metrics for Small Object Detection

The basic metrics for object detection is mAP, which is 
defined in MSCOCO [11]. Average precision (AP) computes 
the average precision value for recall value over 0 to 1. More 
specifically, a 101-point interpolated AP definition, in which 
the recall value is from 0 to 1 at intervals of 0.1, is used in 
MSCOCO [11]. Moreover, mean average precision (mAP) 
is the average AP over multiple IoU threshold (the minimum 
IoU to consider a positive match). However, as for the small 
object detection task, using IoU threshold to distinguish the 
result of the true and false detection is no longer appropriate 
because of the tiny size of objects. When the size is small 
enough, even a little difference between the prediction loca-
tion and ground-truth location can cause huge IoU differ-
ence. Therefore, instead of the IoU threshold, the distance 
between their center points is used to determine whether 
the result is true or not and build up the mean distance aver-
age precision (mDAP) and mean distance average recall 
(mDAR) metrics. Besides, follow the symbol in Ref. [11], 
DAP4 means the DAP calculated with the distance thresh-
old of 4 and DAPS represents the DAP computed among all 
small objects (the size of which is less than 32 × 32 ). Con-
sidering the practical application in autonomous driving, the 
scope of distance threshold is set from 4 pixels to 16 pixels 
with the stride of 2 pixels. Smaller distance threshold means 
higher localization precision but lower recall rate.

5.1.3  Data Augmentation

Because of the particularity of small road hazards detection, 
using the original images to train the model directly has sev-
eral disadvantages. Firstly, the size of images in TJ-LDRO is 
2208 × 1242 , which is too large for training. Meanwhile, the 
images could not be resized because objects are quite small. 
In addition, the vanishing points are always in the center 
of the original images, which may cause serious data bias. 

Therefore, as illustrated in Fig. 9, a data augmentation is 
conducted by randomly cropping original images. The blue 
circle represents the vanishing point, and the yellow circle 
represents the object. The pink and red rectangles are the 
most top-left and bottom-right new images, respectively. The 
green dash area is the randomly cropped region, from which 
the top-left point of the cropped image is randomly chosen. 
This would make the size of images equal to 1344 × 768 
and guarantee that the vanishing points and objects are all 
included.

5.1.4  Training Details

The VCANet is implemented in PyTorch [57] based on the 
project mmdetection [58]. ResNet-50 [51] pretrained on 
ImageNet [59] is used as the backbone unless otherwise 
stated. Adam [60] is chosen as the optimizer, and the learn-
ing rate is set to 10−3 . A mini-batch contains 16 images with 
proposed VCANet trained on 4 GPUs (GTX 1080ti), and 
the whole training process will be stopped after 10k itera-
tions. The training pipeline of the VCANet is mainly divided 
into 2 stages: firstly, the VPT prediction block is trained 
independently and the weights of all other parts are frozen. 
Secondly, the features fusion block, detection block and 
upsampling block are jointly trained. Note that the weights 
of backbone are frozen during the whole training stages.

5.2  VPT Prediction Experiment

The VPT, generated from the VPT prediction block, is used 
to guide where the ROI is. The ROI is mapped to image and 
feature maps and generate the ROI image and ROI feature 
maps, which takes upsampling block as inputs. Thus, the 
performance of VPT prediction has a great influence on the 
upsampling block. In order to evaluate whether the VPT 
prediction is useful to upsampling block, the object in ROI 

Fig. 9  Illustration of the randomly cropped region in data augmenta-
tion
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is measured as a percentage of all objects in different size 
threshold on TJ-LDRO dataset.

As the results shown in Table 2, more than 90% objects 
smaller than 32 × 32 pixels are in the ROI guided by VPT. 
Although the ROI cloud does not include all the small 
objects, the current performance is enough for the upsam-
pling block. Consequently, when generating the ground truth 
for upsampling block, only the objects smaller than 32 × 32 
are adopted while ignoring others.

5.3  Ablation Experiment

In the proposed VCANet, 3 main blocks are of great essence 
for small object detection: the feature fusion block, the 
upsampling block and the detection block. The aim of the 
former 2 blocks is using the low-level detailed information to 
upsample the high-level feature maps. And the latter one is 
to use the context-aware method to assist the detection task. 
As a result, for the purpose of evaluating the influence of 
the proposed context-aware method and upsampling opera-
tion to the performance of VCANet, an ablative analysis is 
conducted on TJ-LDRO dataset.

5.3.1  Is the Context Information Important for Small 
Object Detection?

The results of this ablation study on the proposed context-
aware method are presented in Tables 3 and 4. In this experi-
ment, d is set to 2r and � is set to d

3
 . In addition, the VCANet 

without VPT prediction block and upsampling block is used. 
Four groups of the hyper-parameters p and q are used to 
evaluate the performance. As discussed in Sect. 4.3.1, p is 
used to adjust the weight of object and q is used to adjust 
context environment. (p = 1, q = 1) is used as the baseline 
parameters and tuned around 1 to compare the differences. 
Different p and q bring different results, which means that 
the weights of objects and context of the ground truth have 
a great influence on the network. As the results shown, 
(p = 1, q = 1.5) works the best both in DAP and DAR. 
Therefore, for the next experiment in Sect. 5.3.2, the con-
figuration (p = 1, q = 1.5) is adopted. 

5.3.2  Is the Upsampling Operation Important for Small 
Object Detection?

The results of this ablation study on the upsampling opera-
tion are demonstrated in Tables 5 and 6. The upsampling 
operations on both the feature fusion block and the upsam-
pling block take advantages of the multi-scale feature fusion 
pipeline, mentioned in Sect. 4.2. Three combinations are 
selected including the backbone network(B), the feature 
fusion block(F) and the upsampling block(U) to explore the 
inference of different blocks. As can be seen, the feature 
fusion block has a huge impact on small object detection, 
because the detailed low-level features would be reserved to 

Table 2  The object in ROI as a percentage of all objects in different 
size threshold

Object size threshold 8 16 24 32

Number of objects in ROI 186 1523 2703 3337
Number of all annotated objects 224 1754 3010 3703
Percentage 0.830 0.868 0.898 0.901

Table 3  Ablation study on the proposed context-aware method (Bold 
numbers indicate the best performance)

Context parameters mDAP DAP
4

DAP
8

DAP
S

p = 0.7 , q = 1.0 0.656 0.498 0.659 0.612
p = 0.7 , q = 1.5 0.642 0.503 0.649 0.594
p = 1.0 , q = 1.0 0.658 0.518 0.668 0.627
p = 1.0 , q = 1.5 0.673 0.548 0.683 0.641

Table 4  Ablation study on the proposed context-aware method (Bold 
numbers indicate the best performance)

Context parameters mDAR DAR
S

p = 0.7, q = 1.0 0.736 0.727
p = 0.7, q = 1.5 0.742 0.735
p = 1.0, q = 1.0 0.732 0.730
p = 1.0, q = 1.5 0.735 0.725

Table 5  Ablation study on the upsampling operation  (Bold numbers 
indicate the best performance)

Method mDAP DAP
4

DAP
8

DAP
S

B 0.525 0.168 0.514 0.452
B+F 0.673 0.548 0.683 0.641
B+F+U 0.685 0.540 0.700 0.671

Table 6  Ablation study on the 
upsampling operation (Bold 
numbers indicate the best 
performance)

Method mDAR DAR
S

B 0.629 0.600
B+F 0.735 0.725
B+F+U 0.736 0.738
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enhance the high-level features. Besides, a further upsam-
pling operation on upsampling block can improve the per-
formance much more, revealing that once the architecture 
of network is elaborately designed, the network would dem-
onstrate unprecedented potential to encode the features of 
small objects.

5.4  Compare with the State‑of‑the‑Arts

The proposed VCANet is compared with the state-of-the-
arts on the TJ-LDRO dataset, and the results are displayed in 
Table 7. Four representative models are compared, including 
Faster-RCNN [8], Cascade-RCNN [61], RetinaNet [62] and 
FCOS [63], all of which are typical models of two-stage, 
multi-stage, one-stage and anchor-free object detection, 
respectively. The implementations of all the models are from 
mmdetection [58], and no parameters are modified when 
training and testing. As the results disclose, although FCOS 
and Cascade-RCNN perform well on generic object detec-
tion dataset such as MSCOCO [11], they are not suitable 
for the small object detection task. However, the RetinaNet 
demonstrates the best performance in all of the four baseline 
models. And compared with the RetinaNet in Table 7, the 

VCANet has an improvement of 3.3% on mDAP and even 
5.5% on DAPS.

The visualization of the results is illustrated in Fig. 10. 
The first row shows the detection results of five sampled 
images, in which the yellow and green circles represent the 
vanishing points and target objects, respectively. The sec-
ond and third rows exhibit the vanishing point heatmap and 
center heatmap corresponding to the first row. The last row 
is the ground truth, in which blue and red circles are the 
annotated vanishing points and target objects. As shown in 
Fig. 10, even quite small objects are distinct enough in the 
heatmap and could be detected by the proposed method.

6  Conclusions

Focusing on the small road hazards detection, this paper is 
the first attempt to establish a large TJ-LDRO dataset, which 
consists of 109,337 images from real and virtual simulation 
environment, labeled in detail. Besides, the vanishing-point-
guided context-aware network (VCANet) is introduced, 
which is an architecture that leverages the vanishing point, 

Table 7  Comparison of the 
VCANet with state of the art 
methods on TJ-LDRO (Bold 
numbers indicate the best 
performance)

Method mDAP DAP
4

DAP
8

DAP
S

mDAR DAR
S

Faster-RCNN [8] 0.612 0.553 0.616 0.573 0.702 0.656
Cascade-RCNN [61] 0.585 0.548 0.588 0.544 0.624 0.585
RetinaNet [62] 0.652 0.585 0.658 0.616 0.746 0.721
FCOS [63] 0.584 0.493 0.592 0.560 0.706 0.679
VCANet 0.685 0.540 0.700 0.671 0.736 0.738

Fig. 10  The visual results of our methods
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multi-scale features and contextual information for small 
object detection. This architecture utilizes the VPT predic-
tion block and the context-aware center detection block to 
obtain more semantic information. Also, the multi-scale 
feature fusion pipeline and the upsampling block are intro-
duced to gain more ROI feature. Aiming at evaluating the 
collected dataset and proposed architecture, extensive tests 
are conducted such as the objects percentage in ROI of dif-
ferent object size, different weights of object and context, 
different combination of blocks and other variations. Experi-
mental results show that the proposed VCANet achieves an 
improvement of 3.3% on mDAP and 5.5% on DAPs com-
pared with the state-of-the-art approaches on TJ-LDRO 
dataset. The future plan is to further extend the self-collected 
dataset and test the VCANet with autonomous vehicles in 
real word such as highway scenarios.
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